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Abstract— The recognition of emotions and the generation
of appropriate responses is a key component for facilitating
more natural human-robot interaction. Music, often called the
“language of emotions,” is a particularly useful medium for
investigating questions involving the expression of emotion.
Likewise, movements and gestures, such as dance, can also
communicate specific emotions to human observers. We apply
an efficient, causal technique for estimating the emotions
(mood) from music audio to enable a humanoid to perform
gestures reflecting the musical mood. We implement this sys-
tem using Hubo, an adult-sized humanoid that has been used
in several applications of musical robotics. Our preliminary
experiments indicate that the system is able to produce dance-
like gestures that are judged by human observers to match
the perceived emotion of the music.

I. INTRODUCTION

Humanoid robots are often versatile machines, able
to perform tasks in a variety of ways. For example, a
humanoid might be able to walk at varying speeds, or with
different arm motions. While it may be possible for human
users to specify exactly how they would like a particular
task to be done, it would be more convenient and efficient
if the robot could determine this automatically. Humans
naturally use emotional cues to convey some of this infor-
mation to each other: a ‘frantic’ mood, for instance, may
imply a need for rapid action, while a ‘calm’ mood could
indicate that more time and care could be taken. If robots
could understand this information, they could incorporate it
into their tasks without requiring a human user to explicitly
designate a mood. This would result in simpler and more
intuitive control of robots. Similarly, if robots could display
such emotions, they could communicate them to humans
or each other, again allowing for simpler and more flexible
communication than explicitly declaring a certain mood.

Music, often termed the “language of emotions,” is one
particular area in which we would like robots to be able
to identify and communicate moods [1].1 We wish to
enable robots to perform musical tasks, such as dancing or
performing in musical ensembles, in ways that resemble
human performances. In order for robots to react to music
as humans would, they should determine the mood of
the music, then incorporate that information into their
performances. As different humans may identify the mood
of a particular piece of music differently, the robot’s mood
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Fig. 1. One of the Drexel Hubos.

detection/production system should be robust enough that
a variety of people would agree that the emotional content
of the robot’s motions is similar (or congruent) to that of
the music. This ability would make the robot more useful
as a performance tool or platform for researching musical
performance.

We are interested in using humanoids in particular as
platforms for performing these musical tasks. Many musi-
cal instruments and dance styles are already designed for
the human form, so humanoids are more likely than other
types of robots to be physically capable of the desired tasks.
Similarly, as humans communicate emotions with various
gestures and styles of movement, a robot shaped like a
human is likely to be able to perform similar gestures or
motions to indicate the same moods. We therefore focus
on the design of a system that can detect the mood of a
segment of music, and then control a humanoid robot to
produce a gestural response to convey a congruent emotion.

We have selected the Hubo as our robot platform (Fig. 1).
Hubo is an adult-sized humanoid developed by the Korean
Advanced Institute for Science and Technology (KAIST).
We have used Hubo in several other tasks involving robotic
reactions to audio, such as moving in synchrony with audio
beats [2]. Hubo possesses over forty degrees of freedom
and can perform smooth and graceful motions such as tai
chi, so it is a suitable choice for a robot that will need to
move in human-like ways and display emotion.
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Fig. 2. An A-V plot with several emotions labeled.

II. RELATED WORK

In order to perform musical tasks, a system must often
determine the locations of the the beats in the audio. This is
particularly the case when operating on live performances,
where the beats may not be known in advance. Efficient
beat tracking algorithms have been developed by Scheirer
and Davies [3], [4]. These trackers respectively calculate
the subband energy envelopes or the complex spectral
difference and then perform efficient operations (such as
autocorrelations) to find periodicities in these features. The
periodicities are used to find equally-spaced sets of beats.
Other systems have been proposed that use more complex
algorithms such as Linear Discriminant Analysis [5]. These
systems, though, are often more computationally expensive
and slower than the simpler versions.

We have made several developments in automatically
determining the emotional content of audio. One important
decision was that of representing musical emotion as the
two scalar metrics of arousal and valence [6]. Arousal
represents the intensity of an emotion, while valence in-
dicates whether it is positive or negative (Fig. 2). We have
also obtained annotations of the arousal and valence (A-
V) values in audio from human users, as this ground-truth
data is invaluable in training emotion recognition systems
[7]. Finally, our group has developed several methods
for automatic music emotion recognition. These include
computationally efficient methods, such as calculating the
spectral contrast and Mel-Frequency Cepstral Coefficients
of audio and mapping those features into the A-V space [8].
We also developed and evaluated more elaborate methods,
such as using Deep-Belief Networks to learn new features
that are more correlated to A-V values [9].

Research by Camurri et al. indicates several important
factors in dance motions that determine what mood they
will convey [10]. For example, angry gestures tend to take
less time than sad gestures, contain more tempo changes,
and carry more dynamic tension. Lourens et al. enabled a
robot to identify the emotional content of a user based on
their gestures [11] by modeling the emotions with Laban
notation, a type of notation used specifically to record
dances [12]. Nakata independently verified that robots

are capable of displaying emotion by following Laban
principles [13].

Musically expressive humanoids have been developed
by various groups. Asimo, a humanoid robot developed by
Honda, is able to step in response to music [14]. Simi-
larly, the humanoid robot HRP-2 can produce human-style
dance gestures obtained via motion-capture technology
[15]. Neither of these systems, however, consider mood.
The RoboCup Junior competition includes a ‘dancing’
event, in which robots dance to a piece of music2. The
music is known in advance and played from file, though,
so musical features can be marked by hand instead of being
extracted from the music. Shiratori studied synthesizing
dance performances based on human perceptions of musi-
cal mood [16]. This system, though noncausal, calculated
emotional psychometrics such as ‘intensity’ from both a
piece of music and a human dancer’s response to that
music, and used those values to drive the robot.

III. BEAT, TEMPO, AND MOOD RECOGNITION
In order to make the robot platform as versatile as

possible, it should be be able to retrieve various information
or features from acoustic signals. We focus specifically
on the music information retrieval (MIR) tasks of finding
the tempo, beat locations, and A-V values in a piece of
music. While a robot could, in certain restricted cases,
be capable of knowing these features based on previous
performances, this cannot always be assumed to be the
case. Live performances, for instance, will always vary
slightly from show to show (and may even feature new,
improvised music), so a robot that could only use features
derived from previous performances of a song would be
unlikely to be as congruent with a new performance.

The MIR portion of the system only requires an acoustic
waveform as input. The algorithms do not require metadata
(such as a score) or a digital description of the audio (such
as Musical Instrument Digital Interface, or MIDI, data).
The robot can thus operate even when such information is
not known to the system.

A. Tempo identification and beat tracking

In order for the robot’s motions to be synchronized with
the music, the robot must determine the tempo and beat
locations. When humans dance, their motions are often
spaced according to the tempo and apex on beats, and this
information is needed for many musical tasks. Thus, we
developed a fast and causal beat-tracker for our musical
robots (Figure 3). This system is briefly described below;
the interested reader is directed to our prior work [17].

An acoustic signal is divided into short-time frames
and split into several subbands. The subband envelopes
are smooth and rectified, then autocorrelated. A signal’s
autocorrelation has large values at lag values that are
proportional to the period of the original signal, so by peak-
picking from the autocorrelation, the system can obtain an
estimate of the period (or tempo) of the original music.

2http://rcj.robocup.org/dance.html
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Fig. 3. Flowchart of the beat tracking algorithm.

Once the tempo is known, the energy in each frame
is calculated. The program looks for sequences of frames
with high energy (relative to the surrounding frames) that
are spaced according to the estimated tempo. Consistent
sequences of such frames are marked as likely beat candi-
dates.

We tested our system on twenty pop songs, spanning
one hour in duration. We have obtained accuracy of .98
F-Measure for CD-quality audio, and .92 for audio con-
taminated by robot and room acoustic noise [17].

B. Mood Identification

Our lab previously developed a game called MoodSwings
which allows users to rate the arousal and valence values of
music clips [18]. We selected 240 song clips from the game
and examined their acoustic features to identify correlations
between the features and the A-V ratings. A feature called
spectral contrast was found to be strongly correlated with
both arousal and valence. Spectral contrast is a measure
of the peaks and valleys in a frequency subband, and is
calculated with Equations 1 and 2. [19].

Vs =
1

dNsαe

dNsαe∑
i=1

F (xi) (1)

Ps =
1

dNsαe

Ns−dNsαe∑
i=Ns

F (xi) (2)

F is the spectrum sorted from smallest to largest value,
V and P are the valley and peak values for a subband s,
Ns is the number of elements in the subband s, and α is
a smoothing parameter, here set experimentally to .02.

This algorithm divides the audio into seven subbands and
produces fourteen values, seven peaks and seven valleys,
per frame. Values are aggregated over forty frames for
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Fig. 4. Flowchart of the mood tracking algorithm. ‘AM’ and ‘VM’
represent the arousal and valence mapping values, respectively.

one second’s worth of data. While using ten seconds of
data gives slightly improved results, this also decreases
the system’s ability to adjust if the audio changes [8].
The resulting values are then linearly mapped to A-V
coordinates by multiplying the peak and valley values by
a 14x2 matrix to result in a 2x1 A-V value vector. The
14x2 mapping matrix is calculated by using least-squares
regression on the 240 clips. While some other methods
did produce higher accuracy, such as using Conditional
Random Fields, these methods were all either noncausal
or too slow to be useful in a realtime application [18].

This system was also found to be accurate in our previ-
ous studies. One hour of music was analyzed by human
experts to mark A-V values, and then passed into the
system [7]. This average error of the system was less than
15% of the total space when taking arousal and valence
together, and less than 12% treating them separately.

IV. AFFECTIVE GESTURE GENERATION

The MIR values are used to parameterize the gestures
that the robot makes, thereby enabling it to respond appro-
priately to the music. These parameterizations are based on
the research done by the dance community in determining
how human dancers convey certain emotions by means of
their body language [10], [11].

For this study, we have split the mood space into four
overall areas, as dictated by the A-V map (Figure 2)
[6]. Starting clockwise from the upper-right, these four
areas represent the emotions of ‘Joy,’ ‘Anger,’ ‘Grief’, and
‘Calm.’ We then designed a basic gesture that could be
easily parameterized to represent any of these four emo-
tions. We restricted ourselves to one gesture parameterized
four ways instead of different gestures for each mood in
order to ensure that the reactions of test subjects would be
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Fig. 5. Hubo moving through the gesture that indicates ‘Joy’. Its arms start far apart and pointing down, and they are raised and brought closer to
the body as the gesture continues. The result is a sweeping and expansive upwards motion.

TABLE I
DETAILED PARAMETERIZATION OF ROBOT MOTION FOR FOUR EMOTIONS.

Joy Calm Grief Anger
Motion start time Immediately Immediately Immediately Delayed ( 1

3 through beat)
Vertical arm motion −3" to 5" −2" to 3" −2" to 1" −5" to 2"

Horizontal arm motion 18" to 5" 13" to 8" 11" to 5" 15" to 3"

Head position 15 ◦ 15 ◦ -15 ◦ -15 ◦

solely influenced by the parameterization, instead of the
‘fundamental’ nature of the gesture itself. In order to avoid
destabilizing the robot, we excluded leg motion from the
base gesture. The robot’s arms and head moved as follows:
• Both arms begin extended away from the robot.
• The arms move horizontally inwards and upwards,

towards the robot’s head.
• As this is being done, the head tilts to the left or right.
• Once the arms reach their final position, they stop.
• On the next gesture, the arms and head reverse.
This gesture was selected due to its relative simplicity,

which would allow a test subject to quickly see and analyze
it, as well as its ease of parameterization. The parameter
sets we made are as follows:
• Joy: the arms are raised high and extended far from

the body (Figure 5). As a result, the gesture is wide,
expansive, and relatively fast compared to the other
emotions, since there is more space to cover in the
same amount of time. The head is raised up as well.

• Calm: the arms are raised to a similar height as in the
‘Joy’ emotion, but are closer to the body. This results
in a slower and more constrained motion. The head is
at the same position as with the ‘Joy’ emotion.

• Grief: the arms are at a similar distance from the body
as in the ‘Calm’ gesture, but are lowered to be closer
to the ground. The head is lowered as as well. This
gives the robot a downcast and somber appearance.

• Anger: the arms begin low and far from the robot’s
body. Unlike the other gestures, the robot only moves
during two-thirds of the beat; the robot’s motions are

therefore more ‘agitated’ for this gesture.

The exact specifications of the motions were set with
the above points as a guide, and then tuned by hand to
fit the constraints of the robot (such as the maximum
allowable speed). Table I more precisely specifies the
parameterization of our gesture. Vertical arm motion is
measured from the waist, and horizontal arm motion from
the sides of the robot.

V. EXPERIMENTAL SETUP

Both the beat-tracking and the A-V value prediction
are performed simultaneously in a single MIR system.
The MIR information is then transmitted via Universal
Datagram Packet (UDP) to the robot. UDP is used to
minimize latency, as even a small delay between a motion
and a beat location can look visibly incongruent to a human
observer. While UDP does carry a risk of dropping packets,
this was not found to be a problem during testing.

Twelve clips of audio were taken from our MoodSwings
corpus. These clips were chosen to span the four A-V
quadrants evenly, as indicated by the annotations. Using
a cable, the audio was passed from a music player into
the processing computer that calculated the A-V values
and beat locations, and a Hubo robot then produced the
parameterized gestures. Human experts listened to the
audio and analyzed the resulting performance. The experts,
members of the Music & Entertainment Technology Lab at
Drexel University, are familiar with the A-V representation
of music, having worked with MoodSwings and similar
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TABLE II
ANALYSIS OF MUSIC AND ROBOT EMOTION, SYSTEM PREDICTING BEAT ONLY

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]
A V Emotion Music Robot Error Music Robot Error Mood Beat
+ + Joy .30±.12 .28±.13 .08±.10 .27±.18 .30±.14 .12±.15 3.70±1.17 3.85±0.82
+ - Anger .35±.17 .20±.14 .16±.13 -.34±.13 -.18±.18 .19±.17 3.22±0.85 2.74±0.81
- + Calm -.21±.19 -.17±.17 .12±.10 .20±.19 .21±.15 .13±.13 3.30±0.91 2.81±0.83
- - Grief -.25±.14 -.04±.20 .23±.21 -.04±.26 -.12±.20 .20±.20 2.93±0.96 3.11±0.93

TABLE III
ANALYSIS OF MUSIC AND ROBOT EMOTION, SYSTEM PREDICTING BEAT AND MOOD

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]
A V Emotion Music Robot Error Music Robot Error Mood Beat
+ + Joy .23±.15 .21±.14 .13±.08 .26±.11 .23±.12 .13±.11 3.22±0.55 2.78±0.94
+ - Anger .31±.19 .09±.29 .30±.24 -.22±.27 -.17±.19 .24±.19 2.67±0.91 3.00±0.84
- + Calm -.14±.22 -.09±.23 .20±.21 .08±.22 .08±.23 .17±.18 3.11±0.96 3.06±1.06
- - Grief -.22±.13 -.04±.24 .24±.19 -.07±.23 -.04±.20 .12±.10 3.00±0.97 3.00±1.08

games. Many of these experts are also experienced musi-
cians.

The experts indicated the perceived A-V values of both
the music and the robot’s motions on a scale of -.5 to .5.
Ratings were done with A-V values and not emotions to ob-
tain more precise results, as the A-V values were quantized
more finely than the set of four emotions. Additionally, the
experts determined if the robot’s motions seemed to match
both the mood and the beat locations of the audio, on a 5
point scale. 3 was designated as ‘average’ congruence, so
values of more than 3 indicated a better than average (or
‘strong’) matching between music and motion.

We first analyzed the motions alone (without mood
prediction) by explicitly setting the appropriate mood for
each clip based on the MoodSwings data. The purpose of
this test was to verify that the parameterizations designed
by our experts did indeed map to the specified moods, and
that the robot was capable of demonstrating those moods
with its motions. In a second test, we used the mood-
prediction algorithm to parameterize the gestures. Each
performance was played twice. If the experts thought that
the two performances were dissimilar (indicating an odd
fluke, such as packets dropping), a third performance was
produced.

VI. RESULTS

The results from the first test, in which the ground-
truth mood labels were used to parameterize the robot’s
motions, are displayed in Table II. Nine human users
participated in this test. In the first few columns, the arousal
values provided by nine experts for both the music and
the robot motions are listed. Values are displayed as the
mean ± the standard deviation. The next column is the
distance between the arousal ratings for the music and
motions (across all experts, and across all songs in the

quadrant). The valence values are then displayed. The final
two columns display the congruence results.

Our experiment shows that the robot can accurately
indicate the desired emotion. The arousal and valence
averages of the robot’s motions always have the same signs
as those of the music, indicating that they belong to the
same quadrant. A random classifier, by contrast, would
only achieve the correct values 25% of the time. Therefore,
in a four-emotion system, the robot can move in such a way
as to reliably indicate that emotion to human viewers, to a
degree far greater than chance could provide.

The average error of the system is almost always less
than .2. This means that, if the true arousal and valence
of a piece of audio have a magnitude larger than .2,
the system is likely to classify it correctly. We can thus
pass a wide variety of music into the system and be
confident that the correct emotion will be chosen, enabling
it to function very flexibly. Additionally, the congruence
values, particularly regarding mood, are generally larger
than the ‘average congruence’ value of 3. The human
experts therefore perceived better than average congruence
between the motions and the audio. The only emotion
with a mood congruence less than 3 is ‘Grief’, indicating
that this parameterization may represent the true emotion
less well than the other three. Nonetheless, the congruence
values still demonstrate agreement between the robot’s
movement and its intended mood.

The results from the second test are shown in Table III.
Six human experts were used for this part of the study.
They reported that the robot motions and music were from
the same mood quadrant for all quadrants, thus validating
the system for a four-emotion classifier. Furthermore, the
average error is below .25 in almost every case. Only
the arousal error for the ‘Anger’ mood is greater than
this value, implying that the spectral contrast feature may
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be less adept at indicating this particular emotion. These
results still indicate that we could pass a wide variety of
songs into the system, and as long as the true arousal and
valence values had magnitudes larger than .25, they would
likely be classified correctly.

Comparing the two tests, error is smaller, and mood
congruence larger, in the case where the mood is known in
advance than when the MIR mood system is used. This is
due to the mood identification system being imperfect, and
its errors propagating through to the rest of the system.
However, even when the system does not have ground-
truth emotion values, the mood congruence is generally
still above 3 (indicating above-average matching between
the motions and the acoustic mood) and error remains
relatively small.

Across both tests, error is consistently the smallest
in the quadrant with positive arousal and valence. This
may indicate that this quadrant is the easiest to represent
with motions. When both arousal and valence are high,
the corresponding motions should be large, excited, and
obvious [11]. Other quadrants may require motions which
are smaller and more subtle, and thus harder to analyze.

The congruence values for beat tracking are also near
3. Incongruent ratings are due to the robot not moving on
every beat [17]. To prevent the robot from trying to be in
two places at once, it disregards movement requests that
arrive during existing motions, which leads to short periods
where the robot stands still.

VII. CONCLUSION

We have demonstrated a system that can robustly allow
a robot to move in a manner congruent to the mood of
musical audio. Our results indicate that the system can
reliably extract the mood from a song and produce the
corresponding motions on a robot platform. This validates
our algorithms for mood detection and communication.

We are interested in continuing this research in multiple
directions. On one front, we will modify our motions
to better demonstrate emotions. Incorporating more of
the body into the movements could better convey certain
moods, for example, as could using other movement pa-
rameters (such as velocity and acceleration). By making
the motions more complex, we hope to make the system
better able to convey emotional content.

We also seek to enhance our representation of the mood
space, perhaps even making it continuous, to allow the
robot to display more subtle emotions. This could involve
enhancing our mood-prediction system, such as by using
features found directly from magnitude spectra via machine
learning [9]. We would also like to be able to ‘tune’
the mood system to represent different groups of people.
People from two different countries might react differently
to a piece of music, for instance, and it would be interesting
if the robot could anticipate the responses of both groups.
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