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INTRODUCTION

We are seeking to enable humanoid robots to 
participate alongside humans in live musical 
performances. Such robots could be useful for 
a wide variety of tasks, both relating to research 
and to musical performance. They could be 
used, for example, to study the precise affect of 
certain parameters (such as force, momentum, 

or center of mass) on the human perception of 
ensemble musical performances. These plat-
forms could also be used to help produce novel 
and interesting presentations, as they could play 
in different ways than humans. Certain robots 
might be able to play a series of notes more 
quickly than human performers, for example, 
and so could make certain compositions feasible 
to perform at faster speeds.

In order for the robots to be able to in-
telligently participate in musical ensembles, 
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they must be able to extract certain high-level 
features from the audio and incorporate those 
features into their performances. It is not 
sufficient for the robots to simply perform a 
series of pre-recorded or choreographed mo-
tions. Live performances inevitably vary from 
one show to the next, and even if there are no 
major changes in the music, there will always 
be small shifts in tempo, phrasing, and other 
factors. If the robot can only play according to 
a predetermined sequence, its responses will 
not necessarily mesh with the live performance. 
Additionally, we do not want the musicians 
to be forced to play a certain way in order to 
conform to the robot. The robot, rather, should 
be capable of following the musicians, even if 
their performance is completely different from 
previous ones.

We have performed substantial prior work 
on enabling robots to step or dance in response 
to music (Grunberg, Lofaro, Oh, & Kim, 2011; 
Kim et al., 2010). These performances, however, 
only considered the beat locations and tempo 
of the audio, and disregarded other aspects. We 
now turn our attention to another crucial feature: 
the emotional content, which we also refer to in 
this paper as ‘mood’, of music. Humans modify 
their dance motions so that their performances 
match the mood of the music they dance with, 
and when the dance motion and musical audio 
do not convey the same emotion, the resulting 
performance can look jumbled or confused. 
Therefore, to optimize their dances, the robots 
should be capable of determining an appropriate 
mood and then communicating it via gestures.

The choice of robot platform will influence 
the types of motions and emotions that the 
robot is able to produce. Smaller humanoids 
with more cartoonish looks for example, may 
be more suitable for happier or ‘cute’ emo-
tions. They are also generally more rugged 
and easier and cheaper to repair than larger 
humanoids, so they offer practical advantages 
as well. Conversely, adult sized humanoids are 
often more human-like in appearance, so they 
may be able to display gestures with a higher 
degree of fidelity than the cartoonish miniature 
platforms. These robots also tend to boast more 

computational power and more sophisticated 
motion algorithms. As both types of robots offer 
different advantages, we would like to determine 
which ones are better at communicating which 
emotions to human audiences.

Another important decision is the number 
of robots to be used in a performance. Some 
human dance troupes have several members 
perform identical or similar motions to com-
municate the desired emotional effect to their 
audience. Using multiple robots instead of one 
might increase some of the emotional intensity, 
but it could also encourage the viewer to focus 
less specifically on any one single robot and thus 
be less moved by whatever emotion is being 
expressed. We would therefore like to more 
precisely identify if using multiple humanoids 
for dance performances influences how humans 
perceive the mood of the dances.

LITERATURE REVIEW

The proposed work draws on several different 
areas of engineering. Several signal processing 
algorithms are required to analyze the acoustic 
music, dance theory is needed to determine how 
best to represent emotions with gestures, and 
knowledge of robots is needed to accurately 
control the humanoid platforms.

Beat Tracking

In order for the robot’s motions to appear to 
be congruent with a song, it must move in 
synchrony with the music’s beats. It is thus 
necessary that the final system include an 
algorithm for identifying the tempo and beat 
locations of acoustic music. Numerous such 
algorithms, called beat trackers, have been 
proposed in the literature. Some of the better 
performing of these are highly complex sys-
tems that use sophisticated machine learning 
algorithms such as Hidden Markov Models 
or Linear Discriminant Analysis to precisely 
locate beat positions (Klapuri, Eronen, & 
Astola, 2006; Peeters & Papadopoulos, 2011). 
These systems are not, unfortunately, as use-
ful in situations with restricted computational 
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power or the requirement of causality. Some 
simpler beat trackers work by calculating 
low-level features, then performing relatively 
low cost operations such as autocorrelation to 
find periodicities in these features that can be 
used to find tempi and beat locations. Systems 
taking this approach include those of Scheirer 
(1998), which calculates the subband spectral 
envelopes for its low-level feature, and of Davies 
and Plumbley (2007), which uses the signal’s 
complex spectral difference.

Mood Tracking

Several different algorithms for estimating 
the emotional content of audio have also been 
developed. Systems that our group has studied 
range from using conditional random fields to 
model emotion probabilistically (Schmidt & 
Kim, 2011a) and using deep belief networks 
to determine complicated optimal features for 
mood detection (Schmidt & Kim, 2011b), to 
simply mapping easily calculated low-level 
features to an emotion space (Schmidt, Turnbull, 
& Kim, 2010). Both spectral contrast (Jiang, Lu, 
Zhang, Tao, & Cai, 2002) and Mel-frequency 
cepstral coefficients (MFCCs) (Davis & Mer-
melstein, 1980) have been found to be useful 
features for the latter sort of algorithm. MFCCs 
represent the audio spectrum warped according 
to a perceptual scale that reflects how the hu-
man ear perceives audio, and spectral contrast 
is a measure of the peaks and valleys in the 
acoustic spectrum. Both of these features can 
be mapped to a space representing emotions, al-
lowing mood to be quickly estimated (Schmidt, 
Turnbull, & Kim, 2010).

A significant concern with developing 
systems to identify mood in musical audio 
is that it is difficult to obtain ground-truth 
values. People may disagree on the mood of 
various clips of music, and without a corpus 
of songs with emotion labels; it is difficult to 
train systems to identify the same emotions 
in music as humans do. Our group has previ-
ously developed multiple computer programs 
to help collect this ground truth data. One such 
program, called MoodSwings, requires players 

to mark the emotion of mood in conjunction 
with a peer (Kim, Schmidt, & Emelle, 2009). 
We also developed a similar task for Amazon’s 
Mechanical Turk, to validate the MoodSwings 
results (Speck, Schmidt, Morton, & Kim, 2011). 
The gathered data was richly labeled in terms 
of emotional content, and usable for training 
mood estimation algorithms.

Gesture Production

Once the mood of a song is known, the robot 
must modify its motions based on that knowl-
edge. Dance motions convey emotions in and 
of themselves, even to small children (Boone 
& Cunningham, 1998), and this emotion must 
match that of the audio to avoid producing a 
confusing or disorganized performance. As 
such, it is crucial to incorporate knowledge 
and research from dance studies to determine 
how best to make the robot move in order to 
communicate the required emotion.

Research by Camurri, Lagerlof, and Volpe 
(2003) indicates several important factors in 
dance motions that determine what mood they 
will convey. For example, angry gestures tend 
to take less time than sad gestures, contain more 
tempo changes, and carry more dynamic ten-
sion. Another group enabled a robot to identify 
the emotional content of a user based on their 
gestures (Lourens, van Berkel, & Barakova, 
2010) by modeling the emotions with Laban 
notation, a type of notation used specifically to 
record dances (von Laban, 1956). Importantly, 
this group verified that the values of certain 
elements of Laban notation such as ‘weight’ 
and ‘effort’ correspond strongly to specific 
emotions. It was later independently verified 
that robots are capable of inducing emotion if 
they move according to Laban principles (Na-
kata, Mori, & Sato, 2002). Clay, Couture, and 
Nigay (2009) used a similar model to capture 
emotions from ballet performances.

Musical Robots

Several other dancing or musically expressive 
robots have been developed by various groups. 
Keepon is able to move its head and respond to 
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the beat of audio, although it lacks the ability to 
incorporate mood information into its motions 
(Michalowski, Sabanovic, & Kozima, 2007). 
Haile, a drumming robot, is able to listen to drum 
sequences and respond with complimentary 
notes (Weinberg & Driscoll, 2006). Neither of 
these two robots are humanoid, though, which 
limits their ability outside of these narrow 
contexts. Asimo, a humanoid robot developed 
by Honda, is able to step in response to music 
(Murata et al., 2008; Yoshii et al., 2007). This 
system demonstrates both beat tracking and 
the ability to respond to music, though mood 
is neglected. Similarly, the humanoid robot 
HRP-2 can produce human-like dance gestures 
obtained via motion capture technology (Na-
kaoka et al., 2007), again without considering 
emotional content.

Shiratori and Ikeuchi (2008) have per-
formed research on synthesizing dance perfor-
mances based on human perceptions of musical 
mood. This work also incorporates Laban 
analysis of motion, particularly the ‘weight’ 
and ‘effort’ features. Features of a performance 
such as ‘intensity’ are calculated separately for 
a piece of music and a human dancer’s response 
to that music, and then are incorporated into a 
synthesized dance to be performed by an arti-
ficial dancer. This modeling, however, is more 
useful for offline performances than live ones, 
because the dance motions need to incorporate 
a human dancing to the same music as will be 
used in the performance. This system cannot 
work as well if the human musicians want to 
add a new section or change the music slightly.

ROBOT PLATFORMS

In order to evaluate the impact of the appear-
ance of a humanoid on the emotional content 
of that humanoid’s dances, we have selected 
two different platforms to perform a series of 
gestures. The first of these is a small humanoid 
called DARwIn (Figure 1 left). Developed by 
Virginia Polytechnic Institute and State Uni-
versity, DARwIn is an open platform robot 
measuring 45.5 cm and possessing 20 degrees of 

freedom (DoF). It has a sleek body, with catlike 
ears and very large eyes, which gives the robot a 
cartoonish look. This robot is extremely capable 
for a miniature humanoid, and was victorious 
at the RoboCup 2011 competition. Because the 
platform is open source, we are able to modify 
it to perform the gestures and parameterizations 
that we want. It is thus a suitable miniature robot 
platform for our project.

Our adult sized robot platform is Hubo, 
from the Korean Advanced Institute for Science 
and Technology (KAIST) (Figure 1 right). Hubo 
is 125 cm tall and has over 40 DoF (Park, Kim, 
Lee, & Oh, 2007). Hubo can perform dances 
such as tai chi with grace and fluidity, indicat-
ing that it has the potential to dance or gesture 
well enough to communicate emotion. Addition-
ally, our lab has recently obtained six Hubos 
as part of an international collaboration between 
several American and Korean universities. The 
large number of these robots makes it practical 
to perform tests comparing performances of 
one robot to those produced by multiple hu-
manoids, to determine if the additional robots 
have any effect on the perception of the perfor-
mance’s emotional content.

MOOD SPACE

One difficulty in creating systems to analyze 
mood and emotion is selecting a representation 
of these perceptual features. We have opted 
to use the Arousal-Valence, or A-V, model of 
mood (Thayer, 1989). Mood is mapped onto a 
two-dimensional plane, with the dimensions of 
the plane being arousal and valence. Arousal 
represents the intensity of a particular emotion; 
strong emotions such as “rage” or “ebullience” 
have large arousal values, while weak ones such 
as “tranquility” or “moroseness” have smaller 
values. Valence represents if an emotion is 
positive, such as “happiness” or “peace,” or 
negative, such as “grief” or “despair.” An ex-
ample A-V plane with some emotions labeled 
is depicted in Figure 2.

There are several advantages to utilizing 
this particular representation of mood. Primar-
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ily, this mapping allows for a continuous rep-
resentation of emotion. Instead of having to 
select from a discrete array of emotions or 
moods, the system can map any new acoustic 
musical signal to a point on the A-V plane. This 
also allows for a logical parameterization, in 
which gestures that are near each other on the 
plane can naturally use similar parameter values. 
This mapping has been found suitable for 
gathering emotion labels on MoodSwings 
(Speck et al., 2011), and these labels can in turn 
be used as ground-truth values for evaluation 
of our system.

MUSIC INFORMATION 
RETRIEVAL

In order for the robot platform to be able to 
respond to audio, it must be able to extract 
the tempo, beat location, and AV values from 
acoustic music. These algorithms, developed in 
the field of music information retrieval (M-IR), 
are the backbone of any system that proposes 
to enable an intelligent response to musical 
audio. A brief overview of our algorithms is 
presented here; the interested reader is directed 
to the appropriate references.

Constraints

In order that the system be useful for live audio 
performances, it must be able to function without 

any future knowledge of the music (Grunberg 
et al., 2011). Live performances have inherent 
vagaries that cannot be accounted for if the 
robot simply assumes that the new music will 
be identical to a previous recording. Such an 
assumption would also limit the musicians, 
who could not choose to modify or extend their 
songs because the robot would not be able to 
react appropriately. As such, the final system 
must be able to function at any point in time 
using only audio played before that point and no 
knowledge of the music that is yet to be played; 
in other words, it must be ‘causal.’

It is also necessary that our algorithms be 
robust regarding acoustic noise. While it may 
be possible in some contexts to pass audio to 
the robot directly with an audio cable, this will 
not always be feasible. A better solution is for 
the robot to pick up audio over an acoustic 
channel with one or more microphones. Such 
audio will invariably be contaminated by noise, 
however (Ince, Nakadai, Rodemann, Tsujino, 
& Imura, 2010). Not only are robot platforms 
themselves often noisy, but it is not always 
possible to remove all sources of noise con-
tamination in the room. Therefore, the system 
must be able to robustly extract the required 
audio features even when the audio is clouded 
by other acoustic sources.

Lastly, the system must require minimal 
computation. We would eventually like for the 
entire system to run onboard the robot platforms, 

Figure 1. The DARwIn (left) and Hubo (right) robots
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eliminating the need for an external computer 
to run any of the algorithms. However, robot 
computers are often limited. Robots generally 
have limited power, physical space, and capac-
ity for heat dissipation, so their computers are 
often less powerful than normal. Furthermore, 
these computers must also handle all of the 
tasks required to running the basic systems 
of the robot, and the M-IR algorithms must 
function with only the leftover capacity of the 
computers. Thus, the M-IR algorithms must be 
extremely computationally efficient.

Tempo Identification 
and Beat Tracking

In order for the robot’s motions to be synchro-
nized with the music, the robot must know 
the tempo and the beat locations in the music. 
When humans dance, their motions are often 
spaced according to the tempo and apex on beat 
locations, and we want our robot dancers to be 
able to do the same.

There are many different approaches to 
beat tracking, but our system requires a causal 
and computationally efficient approach. We 
have opted to use a system based off of the 
work of Scheirer and Klapuri (1998, 2006). 

We have obtained accurate and robust results 
with this system in previous work, and have 
found that it can run quickly enough for our 
purposes (Grunberg et al., 2010). A flowchart 
of the system is depicted in Figure 3.

Audio is divided into .025 second frames 
and split into several subbands (Figure 3). The 
subbands increase in width as the central fre-
quency increases, to mimic how the human ear 
divides up the acoustic spectrum. The subband 
envelopes are calculated and then autocorre-
lated, and the lag with the maximal autocor-
relation value is used to find the tempo of the 
audio. Autocorrelations have large values at 
lags that are proportional to the period of the 
original signal, and musical audio can be 
treated as having a weak periodicity of its 
tempo. The system thus identifies the lag cor-
responding to the maximum value of the auto-
correlation, then estimates the tempo based on 
that lag value. The algorithm then searches for 
sets of high energy frames that are spaced ac-
cording to the estimated tempo value. This 
implementation also uses several smoothing 
and weighting steps to result in more consistent 
results.

Figure 2. An A-V plane with several labeled emotions
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This system was found to be highly ac-
curate in a variety of situations, using both 
clean and noisy audio (Grunberg et al., 2011). 
The algorithm obtained an accuracy of a .98 
F-Score for clean audio and (with adjustments 
to eliminate noisy segments) .92 for audio from 
an acoustic channel. The acoustic audio was 
captured while the robot itself was moving and 
generating noise, verifying that the algorithm 
is accurate even in very noisy environments.

Mood Identification

As with beat tracking, there are many existing 
methods for estimating the emotional content 
of audio. Our system was selected to fulfill 
the constraints of causality and computational 
efficiency. The algorithm we chose calculates 
the spectral contrast features of a signal and 
then maps those to A-V values (Schmidt & 
Kim, 2010).

Spectral contrast is a measure of the peaks 
and valleys in a frequency subband, and the 
spectral contrast of a frame of music influences 
its timbre. To calculate this feature, our system 
takes in a frame of audio, divides it into the 

same subbands as used for beat tracking, and 
then calculates maximum and minimum values 
of each subband. For the larger subbands, the 
largest and smallest few values are averaged to 
produce a smoothed maximum and minimum 
estimate. This was found to improve accuracy. 
The result of this step is fourteen extrema (one 
maxima and one minima in each of seven sub-
bands) per frame.

The extrema are aggregated and averaged 
over forty frames to produce fourteen values 
for every second of audio. These values are 
multiplied by a 14x2 matrix to map them to 
A-V values. The mapping matrix is calculated 
by using least squares regression to optimize 
it on a large set of 240 clips with A-V annota-
tions. The annotations were obtained via Mood-
Swings. This large amount of ground-truth data 
helps ensure a robust mapping matrix that can 
accurately map the spectral contrast features 
into the A-V space.

This system was also found to be highly 
accurate in previous studies. On a music corpus 
of 240 clips totaling one hour in length, the 
distance between the moods marked by humans 

Figure 3. Flowchart of the beat tracking system
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and those indicated by the system had a mean of 
only 15.1% of the mood space, with a standard 
deviation of .8% of the space (Schmidt & Kim, 
2010). The system was thus found to be suitably 
accurate for our purposes.

ROBOT GESTURES

The M-IR values are important in that they can 
parameterize the gestures that the robot makes, 
thereby enabling it to respond appropriately to 
the music. These parameterizations are based 
on research done by the dance community in 
determining how human dancers convey emo-
tions via body language (Camurri et al., 2003; 
Lourens et al., 2010).

For this study, we split the mood space 
into four quadrants, as dictated by the A-V map 
(Figure 2) (Thayer, 1989). Starting clockwise 
from the upper-left, these four areas represent 
the emotions of ‘Joy,’ ‘Anger,’ ‘Grief,’ and 
‘Calm.’ We then enable the robot to produce a 
base gesture which could be parameterized to 
represent any of these emotions.

The base gesture is made as follows (Grun-
berg, Batula, Schmidt, & Kim, 2012):

•	 Both arms begin extended down and away 
from the robot. The head starts turned 
towards the robot’s left side.

•	 The arms move inward, towards the ro-
bot’s chest.

•	 At the same time, they move upwards, 
towards the robot’s head.

•	 The robot’s head moves from left to right 
as the arms move.

•	 Once the arms and head have reached their 
final position, they reverse course and 
return to their original position.

This gesture is then modified by the M-IR 
information. The tempo and beat locations found 
by the beat tracker set the temporal length of 
the gesture and gesture start times, respectively. 
The A-V values also influence the gesture, as 
follows (Grunberg et al., 2012):

•	 Joy: the arms begin raised relatively high 
and extended far from the body (Figure 4). 
The motion takes up the entire beat. As a 
result, the gesture is wide, expansive, and 
relatively fast compared to the other emo-
tions (because there is more space to cover 
in the same amount of time). The head is 
tilted up as well.

•	 Calm: the arms are raised as in the Joy 
emotion, but begin closer to the body. This 
results in a slower and more constrained 
motion. The head is at the same position 
as with the Joy emotion. The gesture fills 
the entire beat.

•	 Grief: the arms are still close to the body 
as in the Calm gesture, but are lowered to 
be closer to the ground at both the begin-
ning and apex of the gesture. The head is 
lowered as well. The gesture is performed 
over the full beat.

Figure 4. One Hubo performing the Joy gesture
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•	 Anger: the arms begin lower to the ground 
than in any other gesture, and relatively far 
from the robot’s body as well. The gesture 
additionally only takes up about two-thirds 
of the beat; the robot’s motions are therefore 
sharper than in the other emotions. The head 
is at the same tilt as in the Grief gesture.

The Hubo gestures were designed first. 
Subsequently, the DARwIn gestures were 
crafted to attempt to mimic the Hubo motions, 

although the robots’ different constructions 
made an exact replication impossible. Table 1 
and Table 2 specify the exact parameterization 
of the gesture for the DARwIn and Hubo robots, 
respectively.

EXPERIMENTAL SETUP

Both the beat tracking and the A-V value predic-
tion are performed simultaneously in a single 
M-IR system. This allows the system to share 

Table 1. Specifications of Hubo and DARwIn gesture parameterizations 

Hubo Joy Calm Grief Anger

Arm distance from body 18″to 5″ 13″ to 8″ 11″ to 5″ 15″ to 3″

Arm height from waist -3″ to 5″ -2″ to 3″ -2″ to 1″ -5″ to 2″

Tilt of head 15° 15° -15° -15°

% of beat used for motion 100 100 100 67

DARwIn Joy Calm Grief Anger

Arm distance from body 6.5″ to 2″ 5″ to 3.3″ 4.23″ to 2″ 5.5″ to 1.8″

Arm height from floor -.6″ to 6.4″ -.9″ to 4.4″ -1.4″ to 1.6″ -1.9″ to 1.9″

Tilt of head 15° 15° -15° -15°

% of beat used for motion 100 100 100 60

Table 2. Results of the one-Hubo emotion perception tests 

Ground-truth emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .30±.12 .28±.13 .08±.10 .27±.18 .30±.14 .12±.15 3.7±1.2 3.9±0.8

+ _ Anger .35±.17 .20±.14 .16±.13 -.34±.13 -.18±.18 .19±.17 3.2±0.9 2.7±0.8

- + Calm -.21±.19 -.17±.17 .12±.10 .20±.19 .21±.15 .13±.13 3.3±0.9 2.8±0.8

- - Grief -.25±.14 -.04±.20 .23±.21 -.04±.26 -.12±.20 .20±.20 2.9±1.0 3.1±0.9

M-IR predicted emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .23±.15 .21±.14 .13±.08 .26±.11 .26±.12 .13±.11 3.2±0.5 2.8±0.9

+ _ Anger .31±.19 .09±.29 .30±.24 -.22±.27 -.22±.19 .24±.19 2.7±0.9 3.0±0.8

- + Calm -.14±.22 -.09±.23 .20±.21 .08±.22 .08±.23 .17±.18 3.1±1.0 3.1±1.1

- - Grief -.22±.13 -.04±.24 .24±.19 -.07±.23 -.07±.20 .12±.10 3.0±1.0 3.0±1.1
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common processing elements, such as calcu-
lating Fourier Transforms, thereby decreasing 
the computational cost accrued from using 
both algorithms together. The M-IR system 
thus determines the beat locations, tempo, and 
A-V values for the music being played. These 
values are then transmitted via Universal Da-
tagram Packet (UDP) to the main computer of 
the robot(s).

UDP is a communications protocol that is 
useful for rapid communication between sys-
tems. While UDP lacks the error checking of 
some other algorithms, such as the Transmission 
Control Protocol (TCP), it is faster and therefore 
more suited to a system such as this one. It is less 
problematic if the robot drops a packet than if 
the latency between the calculation of the M-IR 
features and the receiving of those values by the 
robot grows too large, because the latter case 
could result in an apparent desynchronization 
between the robot and the music.

Upon receiving a new packet, the robot 
produces a gesture as instructed by the M-IR 
values. As long as the packets are not received 
during a gesture, the robot will continue to 
perform one motion per packet. If the robot 
receives the next set of values before it is done 
with its latest gesture, however, it disregards 
them. This prevents the robot from trying to do 
two things at once (finishing a previous gesture 
and commencing the next), which could result 
in damage to the platform.

The test music corpus consisted of twelve 
segments of audio taken from our prior selection 
of clips that was annotated on MoodSwings. 
These clips spanned the four A-V quadrants 
evenly, as indicated by the annotations. The 
robot then moved in response to these gestures. 
The length and timing of its gestures was de-
termined by the beat tracker values, and which 
parameterization it used was based on the mood 
identification system. Human experts listened 
to the audio and watched the performance, and 
then they rated both in terms of arousal and 
valence on a scale of -.5 to .5. Additionally, 
they determined if the robot’s motions seemed 
to be congruent (or ‘fit’) both the mood and the 
beat locations of the audio, on a 5 point scale.

Three different robot configurations were 
used for the experiments:

•	 One Hubo robot (the baseline test).
•	 One DARwIn robot.
•	 Four Hubo robots.

These tests would allow us to determine 
whether or not the number or size of the robots 
had an effect on the perceived emotion.

For each configuration, two sets of 
evaluations were performed. The first used 
ground-truth emotional values obtained from 
MoodSwings (instead of the values predicted 
by the M-IR system). This evaluated if the 
robots could demonstrate the correct emotion 
in the best possible case, with perfect knowl-
edge of musical mood. The second test (called 
the ‘predicted emotion test’) used the mood 
tracking algorithm. Because our system does 
not have 100% accuracy for determining A-V 
values, this introduced error into the robot mo-
tions. We therefore wished to evaluate if the 
robot could still produce the correct emotions 
despite this error.

RESULTS AND DISCUSSION

The perceptual results for the tests using one 
Hubo are shown in Table 2. Results have been 
averaged across all experts and all clips within 
the quadrant. Nine experts evaluated the system 
when it used ground-truth emotion, and six 
when it used the M-IR predicted emotions. 
The final totals are shown as the mean and 
standard deviation of the experts’ responses. 
‘Error’ is defined as, for each expert and each 
song, the magnitude of the difference between 
the arousal and valence values marked for the 
music and the robot.

Our baseline results are promising. The 
robot performances were judged, on average, 
to belong to the same quadrants as the music 
in both the ground-truth and predictive cases. 
This indicates that a single Hubo can indeed 
display the appropriate emotions using the 
specified gesture parameterization, and that the 
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mood prediction algorithm is accurate enough 
to maintain this accuracy. The mean error 
never exceeded .2 (or 20% of the mood space) 
for either arousal or valence in the ground-
truth case, or .25 in the predictive case. If the 
ground-truth of a piece of music has arousal 
and valence values of magnitude .25 or greater, 
then, the system will likely correctly identify 
its quadrant, and the Hubo will then produce 
an appropriate gestural response.

The congruency values are also notable. In 
the ground-truth case, congruence for mood is 
almost always greater than 3. This indicates that 
the experts felt there was a good fit between 
the robot’s gestures and the mood of the music. 
Beat congruent values are also relatively high, 
especially in the Joy and Grief emotions. While 
the average congruence values are slightly lower 
for the predictive case, they are still generally 
greater than 3, further validating the good fit of 
the music and the robot’s emotions.

The results from the test using one DARwIn 
as the robot platform are displayed in Table 3. 
Eight experts participated for both of these tests.

The results from the ground-truth DARwIn 
tests compare favorably to the Hubo values. 
The experts again identified the robot gestures 

as belonging to the same mood quadrant as the 
audio for all four quadrants. Additionally, the 
average errors are generally less than in the 
equivalent Hubo case, particularly regarding 
the valence dimension, where all four emotions 
show improvement. Finally, the congruency 
values are greatly improved for all of the emo-
tions except for Joy. Therefore, when using 
ground-truth mood information, DARwIn 
seems better able to communicate most of the 
selected gestures than Hubo, although Hubo 
may be better suited for the Joy gesture. Hubo’s 
greater ability at this one gesture may be evi-
dence that the larger robot is better equipped 
to simulate motions that take up a lot of ‘space’ 
(in Laban notation) like Joy.

The results are less in favor of DARwIn 
when considering the predictive case, however. 
In particular, the arousal axis of the Calm emo-
tion was poorly identified by the experts; though 
the emotion has a negative arousal value, the 
experts identified the robot’s motions as being 
positive. Additionally, the valence of the Grief 
emotion was only slightly negative. Average 
error for arousal, and especially valence, is 
higher as well for the DARwIn using the mood 

Table 3. Results of the one-DARwIn emotion perception tests 

Ground-truth emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .35±.13 .25±.11 .10±.10 .35±.15 .30±.10 .10±.10 3.5±1.0 3.1±0.9

+ _ Anger .37±.19 .42±.09 .11±.18 -.37±.17 -.37±.10 .10±.15 4.1±1.0 4.0±0.9

- + Calm -.15±.20 -.05±.20 .13±.13 .14±.20 .22±.15 .12±.15 3.7±0.9 3.4±1.1

- - Grief -.20±.21 -.07±.24 .14±.11 -.05±.26 -.16±.19 .18±.18 3.3±0.9 3.2±0.9

M-IR predicted emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .27±.18 .13±.16 .15±.13 .28±.18 .27±.17 .09±.08 2.9±1.0 3.2±1.0

+ _ Anger .31±.20 .28±.21 .23±.16 -.34±.12 -.21±.14 .19±.15 2.8±1.2 3.0±0.9

- + Calm -.17±.20 .08±.23 .27±.22 .13±.24 .21±.17 .13±.16 3.1±1.2 3.0±1.3

- - Grief -.24±.18 -.07±.27 .18±.19 -.00±.27 -.06±.23 .15±.18 3.3±1.3 3.1±1.1
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tracking algorithm than for the Hubo, and 
congruence is also less.

These results indicate that, while DARwIn 
may be superior given perfect mood informa-
tion, the emotional content of its performances 
can be more easily thrown off by errors. When 
the M-IR algorithm errs, the DARwIn’s errone-
ous motions are more easily classified in other 
emotion quadrants by the experts than in the 
Hubo case. This may be because the DARwIn is 
smaller and there is less distinction (in absolute 
distance) between gestures. As the gestures are 
closer, incorrect ones may disproportionately 
influence a human’s view of the entire perfor-
mance towards the wrong quadrant.

The results of the multi-Hubo test are 
displayed in Table 4.

In the ground-truth test, error values were 
slightly decreased in the four-Hubo case as 
compared to the one-Hubo case. Positive 
arousal gestures held the most improvement, 
although the Grief emotion contained a sub-
stantial decrease in the arousal error as well 
(changing by a full .06, or 6% of the total space). 
The robot performance average A-V values 
were also in the correct quadrant for every 
emotion. This demonstrated that four Hubos 

better conveyed the correct mood than one. 
Furthermore, mood congruence is increased for 
every emotion except for Grief, which remained 
constant. The multiple Hubos thus seem to have 
a reinforcing effect on the emotional content 
of the performance, when perfect mood data is 
passed to the robot. Lastly, beat congruence 
values are approximately the same for the first 
three gestures, though worse for Grief.

When using the M-IR values, one of the four 
emotions was misidentified on average (Calm 
robot sequences had a positive arousal score). 
While the error values did generally decrease 
for arousal (except for the Calm emotion), 
the values were generally worse for valence. 
Mood congruence improved for the gestures 
with positive arousal values, but remained the 
same or became worse for the others. Clearly, 
while using multiple robots may present a clear 
benefit in communicating emotion with perfect 
ground-truth data, it is not as clearly advanta-
geous when the values are selected using an 
imperfect mood tracker. Beat congruence values 
are much improved for Joy and Grief, but worse 
for the other two emotions.

One other conclusion of note can be seen 
in this data. First, the Grief valence value of the 

Table 4. Results of the four-Hubo emotion perception tests 

Ground-truth emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .33±.12 .30±.11 .05±.08 .37±.14 .36±.10 .07±.12 4.1±0.8 3.8±0.8

+ _ Anger .33±.26 .32±.16 .18±.19 -.39±.11 -.22±.21 .18±.17 3.5±1.0 2.8±0.9

- + Calm -.19±.19 -.15±.15 .09±.11 .19±.23 .25±.13 .14±.16 3.6±1.1 2.9±1.1

- - Grief -.28±.17 -.17±.23 .17±.20 .10±.22 -.08±.19 .24±.20 2.9±1.1 2.6±1.0

M-IR predicted emotion test

Quadrant Arousal: [-.5,.5] Valence: [-.5,.5] Congruence: [1,5]

A V Emotion Music Robot Error Music Robot Error Mood Beat

+ + Joy .29±.11 .29±.11 .09±.10 .29±.20 .28±.16 .12±.13 3.6±1.1 3.5±1.2

+ _ Anger .35±.17 .20±.18 .19±.14 -.39±.11 -.11±.22 .29±.25 2.8±1.0 2.8±0.8

- + Calm -.15±.16 .04±.21 .23±.21 .13±.24 .13±.16 .19±.18 2.8±1.2 2.8±1.0

- - Grief -.23±.19 -.07±.20 .17±.16 .06±.24 -.01±.25 .16±.16 3.0±1.0 3.3±1.0
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music was, on average, marked in the wrong 
quadrant in both four-Hubo tests. The multiple 
Hubos seem to be influencing how people are 
listening to the music and inducing them to 
think of the songs with the Grief emotion as 
having larger valence values than they really do.

While using four Hubos does not seem 
to benefit the system overmuch when using a 
mood tracking algorithm, there is a clear ben-
efit when the ground-truth values are known. 
As such, while the multiple robot setup may 
not be as useful now, if the mood prediction 
system is improved, several robots could help 
convey a desired emotion to human viewers 
more effectively than just one.

CONCLUSION

We have enabled a variety of different sets of 
robot platforms to respond to the beat locations 
and mood of musical audio. Our baseline case 
of one Hubo performed very well, as humans 
identified its motions to belong on average to 
the same gesture quadrant as the audio for all 
quadrants, and found further that its motions 
were congruent with the audio. Both the DAR-
wIn and Hubos did better than the baseline case 
when perfect mood information was utilized, 
but less well (or even worse than the baseline) 
when the M-IR system was used to determine 
A-V values. This indicates, while the one-Hubo 
system is currently the best choice when using 
music with unknown ground-truth emotions, the 
other platforms may be able to do better than 
this system if they use a more accurate mood 
predicting algorithm.

We aim to continue studying the effects of 
different robot platforms on the gestures. One 
aspect of future work is to adjust the gestures 
on DARwIn and the multiple Hubos to try to 
more closely simulate the effects of just using 
one Hubo. This could help provide us with 
rules that would let us discover more about the 
relations between the robot platforms and the 
emotions that they can convey. For example, if 
we found that emotions must be more expan-
sive on DARwIn to convey the same emotion 

as more constrained gestures onboard Hubo 
do, that could be used to help us understand 
the effects of the robot sizes and shapes better.

We also seek to continue improving our 
representation of emotion. Currently, we have 
quantized the emotion space into four quadrants, 
but there are more than four emotions. This lack 
of gradation may be why some of the emotions 
were unclear even when the robots were using 
the emotional ground-truth data – the music 
required a combination of arousal and valance 
values that was not exactly satisfied by any 
of the four parameterizations. By making the 
mood space continuous, we hope to enable a 
greater degree of control over the gestures, 
and thus performances that are more fluid and 
human-like.

In terms of the actual robot control system, 
we are examining systems besides UDP to 
transmit messages to the robots. While UDP 
has many advantages, it will sometimes drop 
packets or even induce noticeable lag. A more 
reliable or faster control scheme could allow 
us to more accurately position the robot, and 
thus more accurately portray a desired emotion.

Finally, we are interested in testing our 
system on larger and more varied groups of 
people. All tests for this paper were conducted 
on experts in a laboratory environment, as these 
people were already generally well acquainted 
with the A-V space and the music tasks. How-
ever, their reactions may be different from those 
of the general population. We are investigating 
making a task that is open to the general pub-
lic, perhaps on Mechanical Turk. By allowing 
people with no known prior knowledge of music 
or emotion to watch videos of the robots dancing 
and to rate their performances as in the prior 
tests, we could validate our results on a much 
wider audience.
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