
2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

EXCITATION MODELING AND SYNTHESIS FOR PLUCKED GUITAR TONES

Raymond V. Migneco and Youngmoo E. Kim

Music and Entertainment Technology Laboratory (MET-lab)
Department of Electrical and Computer Engineering

Drexel University Philadelphia, PA 19104, USA
{rmigneco, ykim}@drexel.edu

ABSTRACT

The analysis and synthesis of plucked-guitar tones via source-filter
approximations is a popular and established method for modeling
the resonant behavior of the string as well as the driving excitation
signal. By varying the source signal, a nearly unlimited number
of unique tones can be produced using a given filter model. How-
ever, it as unclear as to how exactly the model excitation signals
should be parameterized in order to capture the nuances of a gui-
tarist’s articulation from a recorded performance. In this paper, we
apply principal components analysis to a corpus of excitation sig-
nals derived from plucked-guitar recordings in order to design a
codebook that captures the unique characteristics of certain string
articulations. The development of an excitation codebook has sev-
eral applications, including expressive synthesis of guitar tones for
virtual music interfaces and insight into the expressive intentions of
a performer through audio analysis.

Index Terms— Source-filter models, musical instrument syn-
thesis, PCA

1. INTRODUCTION

Source-filter models are a well-established technique for the anal-
ysis and synthesis of many acoustic signals, including musical in-
struments. When applied to modeling plucked-string instruments,
these models provide a clear analog to the physical phenomena in-
curred with exciting the string; that is, an impulsive-like force from
the performer excites the resonant behavior of the string. In the
case of the guitar, many techniques are available for estimating and
calibrating the resonant filter properties of the string [1, 2, 3], but
little research has been invested in the analysis of the source signals,
which are responsible for reproducing the unique timbres associated
with the performer’s articulation. The latter problem is complex be-
cause there are nearly an infinite number ways to pluck a string,
each of which will yield a unique source signal even when the tones
have a similar timbre.

In this paper, we apply principal components analysis (PCA) to
a corpus of excitation signals derived from recordings of plucked-
guitar tones in order to derive parameters useful for modeling the
unique characteristics of guitar articulations. As we will discuss,
PCA is employed for this task in order to exploit the common fea-
tures of the excitation signals while modeling the finer details using
the appropriate principal components. Our approach can be viewed
as designing a codebook where the entries are the components that
describe the unique characteristics of the excitation signals. This
research has several applications, including modeling guitar per-
formance directly from recordings in order to capture expressive

and perceptual characteristics of a performer’s playing style. Addi-
tionally, the codebook entries obtained in this paper can be applied
to musical interfaces for control and synthesis of expressive guitar
tones.

2. BACKGROUND

Synthesis of plucked-guitar tones is often based on digital wave-
guide (DWG) modeling principles, which were introduced by Smith
to simulate the d’Alembert solution for traveling waves on a lossy
string [4]. The DWG model for a guitar utilizes two spatially sam-
pled delay lines to model the time-varying amplitudes and positions
of the left- and right-traveling wave shapes that result from releas-
ing an initially displaced string. Later, Karjalainen et al. showed
that the DWG model could be reduced to the so-called single-delay
loop (SDL) model, which is shown in Figure 1 [5]. This model con-
solidates the components of the DWG model into a single delay line
z−DI in cascade with a loop filter Hl(z) and a fractional delay filter
HF (z). The loop and fractional delay filters are calibrated such that
the total delay D in the SDL satisfies D = fs

f0
where fs and fo indi-

cate the sampling frequency and target pitch, respectively. Hl(z) is
designed by determining a filter with a magnitude response match-
ing the decay rates for the harmonically-related partials in the tone
[1, 2, 3].

While the SDL is essentially a source-filter approximation of
the physical system for a plucked-string, there are several benefits
associated with modeling tones in this manner. For example, mod-
ifying the source signal permits arbitrary synthesis of unique tones
even for the same filter model. Also, for analysis tasks it is desir-
able to model the perceptual characteristics of tones from a recorded
performance by recovering the source signal using linear filtering
operations, which is possible with a source-filter model.

There are several approaches used in the literature for determin-
ing the excitation signal for the source-filter model of a plucked-
guitar. A possible source signal includes filtered white noise, which
simulates the transient noise-like characteristics of a plucked-string.
Other methods utilize non-linear processing to spectrally flatten the
recorded tone and use the resulting signal as the source, since it
preserves the signal’s phase information [6, 7]. A well-known tech-
nique involves inverse filtering a recorded guitar tone with a prop-
erly calibrated string-model [1, 2]. When inverse filtering is used,
the string model cancels out the tone’s harmonic components leav-
ing behind a residual that contains the excitation in the first few
milliseconds. In [8], these residuals are processed with “pluck-
shaping” filters to simulate the performer’s articulation dynamics.
For improved reproduction of acoustic guitar tones, this approach
is extended by decomposing the tone into its deterministic and
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Figure 1: Single delay-loop (SDL) model for plucked-string syn-
thesis.

stochastic components, separately inverse filtering each signal and
adding the residuals to equalize the spectra of the residual [9].

3. EXCITATION MODELING

It is well known by guitarists that exactly reproducing a particular
articulation on a guitar string is extremely difficult, if not impossi-
ble. However, we hypothesize that excitation signals obtained from
analyzing similarly plucked-guitar tones exhibit common charac-
teristics that can be parametrically represented. Techniques used
by guitarists to vary their articulation include altering the dynamics
(i.e. relative “hardness” or “softness”) of their picking technique
and also changing the mechanism for exciting the string (i.e. using
a pick, nail or finger). These techniques have a direct impact on
the initial shape of the string, and yield perceptually unique timbres
especially during the “attack” instant of the tone.

3.1. Recovering the Excitation

To demonstrate the signal-level differences associated with different
articulations, we recover the excitation signals for different plucked-
guitar tones produced by using either a pick or the fleshy part of a
finger to produce the articulation. These excitations were recovered
by inverse filtering the recorded tone with a string filter so that

P (z) = Y (z)/S(z) (1)

where P (z), Y (z), and S(z) represent the excitation signal,
recorded tone and string model, respectively. We employ the SDL
model described in Section 2 for our string filter. The recovered ex-
citations were normalized and aligned by using the lag computed
from the cross-correlation between each p(n) and the same ref-
erence signal to ensure the significant features overlapped. After
alignment, the first 15 milliseconds of each residual is retained to
avoid including amplitude and phase errors from the string filter.
As our corpus consists of electric guitar recordings, truncating the
residual does not omit the body resonance effects observed in acous-
tic guitars [9].

Figure 2 shows that the recovered signals share the same con-
tours, which are related to the d’Alembert solution for a plucked-
string since observing the sum of the left- and right-traveling dis-
turbances at a particular location along the string yields patterns of
constructive or destructive interference for each period of vibration
[10]. The deviations between these signals are also obvious as well.
In particular, residuals corresponding to pick articulations exhibit
sharp, impulse-like transitions near areas of interference, where the
the finger articulations are generally smoother in these areas. Thus,
the residuals reflect the impact of the performer’s finger or pick on
the string’s initial shape.
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Figure 2: Over-layed excitation signals obtained by inverse filtering
recorded tones produced by varying the string articulation.

3.2. PCA Modeling

We investigate modeling the excitation signals obtained from
plucked-guitar tones using principal components analysis (PCA)
since we wish to exploit the common characteristics of our signals
while modeling the details with only the essential principal compo-
nents required for a particular set of articulations.

We perform PCA on our data by forming a matrix P =
[p1p2 . . .pN ] where each pi is a column vector containing a M -
dimensional signal from the N signals in our database. The residual
signals are recovered from recordings sampled at 44.1kHz and we
choose M = 650 as the normalized length to yield a duration of
∼15 milliseconds for each signal. A particular excitation can be
represented by taking the linear combination

xi = pi − p̄ =

M�

m=1

wi,mvm (2)

where p̄ is the empirical mean of our data and v are the eigenvectors
of the covariance matrix computed by taking E(xxT ). The PCA
weights w are obtained by projecting x onto the components in
v [11]. The eigenvectors in v are arranged corresponding to the
decreasing order of the associated eigenvalues so that λ1 > λ2 >
· · · > λM .

PCA provides us with a means of determining how many di-
mensions are needed to accurately and compactly represent our
data. We examine compactness by calculating the explained vari-
ance (EV), which is obtained by selecting M � < M and computing
ΣM�

m λm/ΣM
mλm. In Figure 3 we see that selecting M = 20 ac-

counts for 99% of the EV, which suggests that the dimensionality of
the excitation signals is relatively low (� 650).

Plotting the mean vector p̄ along with the first 3 principal com-
ponents v1, v2 and v3 provides additional insight on how PCA
decomposes our data. In Figure 4 we see that p̄ captures the gen-
eral contour of the excitations plotted in Figure 2 while the principal
components provide the finer details of the articulations by incorpo-
rating high-frequency information into the model.

3.3. Codebook Design

Though 99% of our data’s variance may be explained by taking
M = 20 principal components (PCs), we expect that only a sub-
set of these are required to reconstruct the signals with reasonable
accuracy. Furthermore, we do not expect that these subsets are nec-
essarily the same for finger or pick articulations, since their corre-
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Figure 3: Proportion of explained variance achieved by varying the
number of principal components used in the analysis.
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Figure 4: Mean vector p̄ (top) of the extracted excitation signals
followed by the first 3 principal components.

sponding excitation signals have distinguishing features as shown
in Figure 2. Thus, we seek the essential PCs to comprise codebooks
that describe excitation signals corresponding to a particular articu-
lation.

To determine the subsets of PCs comprising our codebook, we
sort the first 20 PC weights for each signal in descending order to
obtain w = [w1w2 . . . w20] where w1 > w2 > · · · > w20. For
each signal, the 5 largest weights in w are selected and used to de-
termine the distribution of the top PC weights for all the signals
corresponding to a particular articulation. Figure 5 shows the dis-
tributions of these top PC weights corresponding to the finger and
pick excitations. From Figure 5, it is evident that PC 1 is the top
weight for pick articulations and thus an essential component for
representing the associated excitation signals. On the other hand,
the top weights for finger excitations are approximately uniformly
distributed over PCs 2 through 11.

Using the data in Figure 5 as a guide, the codebook entries for
each articulation type are selected by choosing L of the top PC com-
ponents with the largest weights. This yields a subset of weights ŵ
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Figure 5: Weight frequencies for the first 20 principal components
for finger and pick articulations.

and associated eigenvectors v̂ from the initial PC analysis where
ŵi ⊂ wi and v̂ ⊂ v, respectively. The first 5 codebook entries
for pick articulations are shown in Figure 6, where it is evident that
the PCs incorporate increasing high frequency detail into the source
model.
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Figure 6: 5 codebook entries for excitation signals corresponding to
guitar tones produced with a pick. Entries are offset for clarity.

3.4. Excitation Synthesis

By defining the subsets of PC components as entries for the code-
books representing finger and pick articulations, the excitation sig-
nals are reconstructed by taking

xi = p̄ +
L�

l=1

ŵi,lv̂l. (3)

In (3), ŵi,l and v̂l are the subsets consisting of L weights and eigen-
vectors from the original PC data describing each articulation.

To evaluate the quality of the reconstruction, we compute the
signal-to-noise ratio (SNR) between the original excitations and the
reconstructions generated by varying the number of codebook en-
tries used in (3). The average SNR values for pick and finger ar-
ticulations are reported in Table 1, which reveals some interesting
trends. Notably, the pick articulations are well-represented by a few
codebook entries with moderate SNR improvement as more entries
are added. On the other hand, the SNR improves significantly as

195



2011 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 16-19, 2011, New Paltz, NY

SNR (dB) for Number of Codebook Entries

Pluck Type 1 2 3 4 5 6 7 8 9 10
Pick 17.78 18.05 18.18 18.35 18.81 18.90 19.01 19.10 19.24 19.40

Finger 10.55 10.56 13.30 13.35 13.44 13.60 13.87 13.93 13.94 14.62

Table 1: Average signal-to-noise ratio computed between recovered and synthetic excitations. The columns indicate the SNR corresponding
to the number of codebook entries used for synthesis.
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Figure 7: Reconstructed excitation signal produced by varying the
number of codebook entries.

more entries are used for finger articulations, which suggests using
additional codebook entries to better represent these signals. This
result is not surprising, since we observed more irregularities be-
tween different finger articulations, which leads us to believe that it
is more difficult to control exactly how the finger separates from the
string.

Figure 7 demonstrates the quality of reconstruction achieved
by varying the number of codebook entries for a finger excitation
signal. Clearly, the complex contours of the signal are not well
modeled using one entry, but a reasonably good approximation is
achieved with ten entries.

4. DISCUSSION AND FUTURE WORK

This paper presents a novel approach towards modeling the excita-
tion signals that drive a source-filter model for plucked-guitar tones
using PCA. PCA is capable of modeling the common features of
the excitation signals, which are related to the physical behavior of
plucked strings, as well as the fine details that distinguishes the type
of articulation used by the performer. Additionally, a framework
for extracting a codebook that describes a particular articulation is
presented, which permits reasonably good approximations of the
original excitation signals using only a few principal components.

Future work entails further analysis of plucked-guitar tones to
develop excitation codebooks that describe additional dimensions

of expressiveness used by the performer, such as dynamics and ad-
ditional picking devices. Furthermore, a perceptual analysis on the
synthetic guitar tones created with the codebooks should be investi-
gated to determine the model’s validity.
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