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Abstract—Human emotion responses to music are dynamic
processes that evolve naturally over time in synchrony with the
observed music signal. It is because of this dynamic nature that
systems that seek to predict emotion in music must necessarily
analyze such processes on short-time intervals, modeling not just
the relationships between acoustic data and emotion parameters,
but also how those relationships evolve over time. In this work, we
discuss modeling such relationships using a conditional random
field (CRF), a powerful graphical model that is trained to predict
the conditional probability p(y|x) for a sequence of labels y
given a sequence of features x. We train our graphical model on
the emotional responses of individual annotators in an 11×11
quantized representation of the arousal-valence (A-V) space.
Our model is fully connected and can produce estimates of the
conditional probability for each A-V bin, allowing us to easily
model complex emotion-space distributions (e.g. multimodal)
as an A-V heatmap. In selecting acoustic features for music
emotion recognition, we discuss the application of regression-
based deep belief networks (DBNs) to learn features directly from
magnitude spectra. These features are specifically optimized for
the prediction of emotion, and the trained models can potentially
provide new insight into the relationships between music and
emotion.

I. INTRODUCTION

The medium of music has evolved specifically for the
expression of emotions, and it is natural for us to organize
music in terms of its emotional associations. But while such
organization is a natural process for humans, quantifying it
empirically proves to be a very difficult task. Myriad features,
such as harmony, timbre, interpretation, and lyrics affect
emotion, and the mood of a piece may also change over its
duration. But in developing automated systems to organize
music in terms of emotional content, we are faced with a prob-
lem that oftentimes lacks a well-defined answer; there may
be considerable disagreement regarding the perception and
interpretation of the emotions of a song or ambiguity within
the piece itself. When compared to other music information
retrieval tasks (e.g., genre identification), the identification of
musical mood is still in its early stages, though it has received
increasing attention among the music information retrieval
(Music-IR) research community in recent years [1].

Collecting human judgements is necessary for deriving emo-
tion labels and associations, which presents difficulty given the
variability of perceptions between listeners that evolve over
time in synchrony with the music. In collecting this data,
we have investigated approaches using both serious games
and Amazon’s Mechanical Turk (MTurk) [2], [3]. In both
approaches we designed activities to collect second-by-second
labels of music using the two-dimensional, arousal-valence

(A-V) model of human emotion, where valence indicates
positive vs. negative emotions and arousal reflects emotional
intensity [4]. This representation provides quantitative labels
that are well-suited to computational methods for parameter
estimation. The activities were designed specifically to capture
A-V labels dynamically (over time) to reflect emotion changes
in synchrony with music and also to collect a distribution
of labels across multiple players for a given song or even
a moment within a song. In our serious games approach,
we created MoodSwings, a two-player online collaborative
activity, wherein each subject provided a check against the
other, reducing the probability of nonsense labels [2]. To
investigate any biases in the data due to collaborative labeling,
we also investigated annotating the same corpus with a more
traditional single paid annotator approach using MTurk [3]. In
this approach, we collected labels highly correlated with those
collected in the game, essentially finding no biases due to its
collaborative nature. Furthermore, we also found the ability
to collect data at a much higher rate than the game, but at
the cost of dealing with a large increase in noise due to the
monetary incentives.

No dominant feature representation for music emotion
recognition has yet emerged. Current methods typically focus
on combining several feature domains (e.g. loudness, timbre,
harmony, rhythm), oftentimes as many as possible, followed
by feature selection and dimensionality reduction techniques.
While these methods can lead to enhanced classification
performance, they leave much to be desired in terms of un-
derstanding the complex relationship between acoustic content
and emotional associations. In this talk, we will discuss using
deep belief networks (DBNs) to learn representations of music
audio that are specifically optimized for the prediction of
emotion [5], [6].

In previous work, we have investigated modeling emotional
responses to music as a time-varying stochastic distribution [7]
within the A-V model of human emotions. Such models are
inflexible to A-V distribution variation across multiple songs,
and we have therefore also investigated heatmap representa-
tions [8]. To obtain A-V heatmaps, we model the relationships
between acoustic parameters and emotion space classes using
a conditional random field (CRF), a powerful graphical model
which is trained to predict the conditional probability p(y|x)
for a sequence of labels y given a sequence of features x.
Treating our features as deterministic, we retain the rich local
subtleties present in the data, which is especially applicable to
content-based audio analysis given the abundance of data in



these problems. We train our graphical model on the emotional
responses of individual annotators in an 11×11 quantized
representation of the arousal-valence (A-V) space. Our model
is fully connected and can produce estimates of the conditional
probability for each A-V bin, allowing us to easily model
complex emotion-space distributions (e.g. multimodal) as an
A-V heatmap.

II. DATA COLLECTION METHODS

In our serious games approach, we designed MoodSwings,
a collaborative online game that leverages crowdsourcing to
collect mood ratings [2]. The game board is based on the
A-V space, where the valence dimension represents positive
versus negative emotions and arousal represents high versus
low energy [4]. Anonymously-partnered players label song
clips together during each round, scoring points based on the
overlap between their cursors, which encourages consensus.
Bonus points are awarded to a player whose partner moves
towards him/her, encouraging competition and discouraging
players from blindly following their partners to score points.
We recently initiated a redesign effort, investigating gameplay
improvements suggested by an analysis of collected labels [9].
However, we have not addressed concerns about the game
structure biasing annotations.

In order to investigate biases and potentially faster data
collection, we designed a simplified labeling task for MTurk,
shown in Figure 1. Single workers provide A-V labels for
clips from our dataset, consisting of 240 15-second clips,
which are extended to 30 seconds to give workers additional
annotation practice [10]. As in MoodSwings, we collect per-
second labels, but no partner is present and no points are
awarded. Workers are given detailed instructions describing
the A-V space. They navigate to a website that hosts the
task and label 11 randomly-chosen clips. The first clip is a
practice round, omitted from our analysis. The third and ninth
are identical, randomly chosen from a set of 10 “verification
clips,” which are evaluated to identify unsatisfactory work.
Workers are given a 6-digit verification code to enter on the
MTurk website as proof of completion, which, if successful,
earns workers $0.25 per HIT. This new dataset has been made
available to the research community,1 and is well annotated,
containing 16.93 ± 2.690 ratings per song and 4, 064 label
sequences.

III. FEATURE LEARNING WITH DEEP BELIEF NETWORKS

The ambiguous nature of musical emotion makes it an
especially interesting problem for the application of feature
learning. Using deep belief networks (DBNs) [11], [12], [13],
we develop methods for the learning of emotion-based acoustic
representations directly from magnitude spectra. The topology
of a trained DBN is identical to that of a multi-layer perceptron
(MLP) or neural network, but DBNs employ a far superior
training procedure involving a secondary topology, which is
later removed. DBN training begins with an unsupervised pre-
training approach using greedily-trained restricted Boltzman

1http://music.ece.drexel.edu/research/emotion/moodswingsturk

Fig. 1. Screenshot of labeling task deployed on MTurk, depicting the A-V
space and a yellow orb as the annotator’s cursor. A sidebar provides additional
instructions, e.g. workers may type “B” if they encounter bugs in the task.

machines (RBMs) [11], [12], [13]. The general approach is to
attach a logistic regression layer for classification after pre-
training and to then use gradient descent to perform the fine-
tuning. In this approach, we implement the DBN to learn
feature detectors for a regression problem and instead attach a
linear regression layer. Our approach uses conjugate gradient
fine-tuning, which we found to provide more accurate feature
detectors for our regression problem.

A graphical depiction of an RBM is shown in Figure 2. An
RBM is a generative model that contains only a single hidden
layer, and in simplistic terms they can be thought of two sets
of basis vectors, one that reduces the dimensionality of the
data and the other that reconstructs it.
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Fig. 2. Restricted Boltzman machine topology.

During RBM learning the individual node connections are
treated as a Markov chain, and the all of the units in one layer
are updated in parallel given the states of the other layer; this
is repeated until the system reaches equilibrium. We train our
RBMs using contrastive divergence, which runs the Markov
chain for n full steps before computing the correlation between
hidden and visible layer, and can be seen as minimizing the
difference of two KL-divergences,

KL(P 0||P∞
θ )− KL(Pnθ ||P∞

θ ) (1)



where P 0 is the distribution of the data, and P∞
θ is the

equilibrium distribution of the model [12]. During pre-training,
we learn restricted Boltzman machines “greedily,” where we
learn them one at a time from the bottom up. That is, after we
learn the first RBM, we retain only the forward weights and
use them to create the input for training the next RBM layer.

As in the typical approach to deep learning, after pre-
training we form a multi-layer perceptron using only the
forward weights of the RBM layers. However, in typical
approaches the final step is to attach logistic regression layer
to the output of the MLP, and the full system is fine-tuned for
classification using gradient descent. We wish the output of
our DBN to be continuous A-V coordinates, and we therefore
instead attach a simple linear regression layer and report the
prediction error for fine-tuning as the mean squared error of the
estimators. Squared error is chosen as opposed to Euclidean
error for speed and numerical stability, as both functions have
the same minimum. Furthermore, we elect to do our fine-
tuning using conjugate gradient optimization, which we found
to outperform gradient descent for our topology during initial
testing.

We trained our DBNs using Theano,2 a Python-based pack-
age for symbolic math compilation, and Scipy’s optimization
toolbox for the conjugate gradient optimization. Theano is
an extremely powerful tool for machine learning problems
because it combines the simplicity of Python with the power
of compiled C, which can target the CPU or GPU.

IV. CONDITIONAL RANDOM FIELDS

In this section we give a brief overview of conditional ran-
dom fields (CRFs), mainly focused on practical considerations
in implementation. The interested reader is directed to [14],
[15] for further details.

A. Overview

Traditional approaches for graphical modeling (e.g. hidden
Markov models) seek to represent the joint probability p(x,y)
between sets of features x and labels y. But in forcing our
features into a generative model p(x), we discard the rich
local subtleties present in the data. Furthermore, in developing
models for audio classification tasks, our acoustic features are
naturally deterministic. With CRFs, as with logistic regression,
we seek to model the conditional probability p(y|x).

CRFs are trained on sequences, and in the process of
learning them we present the classification system with the
individual user ratings (as opposed to statistics of all users)
recorded in the MTurk task. Using a fully connected model,
we are able to learn a set of transition probabilities from each
class to all others. This means that at each stage in a testing
sequence we can display the transition probabilities in the form
of a heatmap as shown in Figure 3.

2http://deeplearning.net/software/theano/
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Fig. 3. Heatmap visualization of CRF transition probabilities. Actual
discretization is 11×11.

B. Feature Functions

CRFs require the specification of feature functions, which
are used to specify the degree of compatibility between the
features x and labels y. These functions are defined over all
examples and for a single example are non-zero only for the
labeled class. We train our CRFs using CRF++,3 a highly
efficient general purpose CRF toolkit written in C++. CRF++
allows the definition of both unigram and bigram features,
where unigram features are related to the prediction of a single
observation in a sequence (first order Markov) and bigram
features are related to the prediction of pairs of observations
(second order Markov). Unigram features generate a total of
L×N distinct features, where L is the number of output classes
and N is the number of unique features. Bigram features
generate L×L×N distinct features.

V. DISCUSSION AND FUTURE WORK

The deep belief network is a powerful topology for music
emotion recognition for both learning informative feature
domains, as well as providing insight into the direct rela-
tionship between emotion and acoustic content. The overall
performance could potentially be increased by more advanced
regression algorithms that are more robust to the high dimen-
sionality of the data. Furthermore, other optimization methods
for fine-tuning the deep structure could be investigated as
well as alternate error metrics. The approach, which models
the output of the regression layer as a single point in the
A-V space, could be expanded to a metric that provides
better knowledge of the emotion space distribution. Such an
approach could model the A-V space as a heatmap, using the
same approach as with the CRF.

Many problems in music information retrieval lack a singu-
lar dominant feature, and thus much attention has been given
to feature selection and dimensionality reduction methods.
These methods can be helpful in increasing classification
performance, but leave much to be desired in terms of math-
ematical understanding of the predicted process. Research in
deep learning is still in the early stages but offers the potential
to inform many of these tasks both conceptually, as well as in
raw performance.

3http://crfpp.sourceforge.net/



Emotion Space Heatmap Prediction
Boston: Something About You, 25-32 secs 

Fig. 4. Emotion space heatmap prediction using conditional random fields. Shown is the predicted emotion from the beginning of the song “Something
About You,” by Boston. These figures demonstrate the system tracking the emotion through the low-energy, negative-emotion introduction, and through the
transition at second 29 into a high-energy, positive emotion rock verse. In these figures, red indicates the highest density and blue is the lowest [8].

In a future approach, the CRF performance could be
improved by developing a model that can encapsulate the
A-V spatial relationships between CRF nodes, which could
potentially produce smoother estimates without any need for
label jittering. In such a model, we could also limit the
connections between local heatmap pixels, thus allowing us
the ability to tradeoff model complexity for the flexibility of
our emotion space distribution.

In the talk, we will show results and discuss the effective-
ness of CRFs for modeling the relationships between acoustic
features and emotion space parameters. Furthermore, we will
discuss feature learning in musical emotion recognition and
demonstrate its use in providing us with computational models
to potentially learn more about the relationships between
the acoustic and affective domains. In looking to improve
emotion-prediction performance, we will also discuss several
potential directions in the development of models that incorpo-
rate multiple spectral time-scales to derive musical emotion.
We will provide additional results for these approaches and
discuss the tradeoffs associated with the increased input di-
mensionality as a result of the additional data.

ACKNOWLEDGMENT

This work is supported by National Science Foundation
award IIS-0644151.

REFERENCES

[1] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P. Richardson,
J. Scott, J. A. Speck, and D. Turnbull, “Music emotion recognition: A
state of the art review,” in ISMIR, Utrecht, Netherlands, 2010.

[2] Y. E. Kim, E. Schmidt, and L. Emelle, “MoodSwings: A collaborative
game for music mood label collection,” in ISMIR, Philadelphia, PA,
September 2008.

[3] J. A. Speck, E. M. Schmidt, B. G. Morton, and Y. E. Kim, “A
comparative study of collaborative vs. traditional annotation methods,”
in ISMIR, Miami, Florida, 2011.

[4] R. E. Thayer, The Biopsychology of Mood and Arousal. Oxford, U.K.:
Oxford Univ. Press, 1989.

[5] E. M. Schmidt and Y. E. Kim, “Learning emotion-based acoustic features
with deep belief networks,” in WASPAA, New Paltz, NY, 2011.

[6] ——, “Modeling the acoustic structure of musical emotion with deep
belief networks,” in NIPS Workshop on Music and Machine Learning,
2011.

[7] ——, “Prediction of time-varying musical mood distributions from
audio,” in ISMIR, Utrecht, Netherlands, 2010.

[8] ——, “Modeling musical emotion dynamics with conditional random
fields,” in ISMIR, Miami, FL, 2011.

[9] B. G. Morton, J. A. Speck, E. M. Schmidt, and Y. E. Kim, “Improving
music emotion labeling using human computation,” in ACM SIGKDD
HCOMP Workshop, Washington, D.C., 2010.

[10] E. M. Schmidt, D. Turnbull, and Y. E. Kim, “Feature selection for
content-based, time-varying musical emotion regression,” in ACM MIR,
Philadelphia, PA, 2010.

[11] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
July 2006.

[12] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
2006.

[13] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-
wise training of deep networks,” in NIPS. MIT Press, 2007.

[14] C. Sutton and A. McCallum, “An introduction to conditional random
fields for relational learning,” in Introduction to Statistical Relational
Learning, L. Getoor and B. Taskar, Eds. MIT Press, 2007, ch. 4, pp.
93–127.

[15] J. Lafferty, A. McCallum, and F. Pereira, “Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data,” in
ICML, 2001.


