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ABSTRACT

Oftentimes when we listen to a familiar singer, the unique qual-
ities of that performer’s voice allow us to establish the singer’s
identity with relative ease. It is believed that the unique acoustic
qualities of an individual singer’s voice arise from a combination
of innate physical factors (e.g. vocal tract and vocal fold physiol-
ogy) and individual characteristics of performance and expression
(e.g. pronunciation and accent). In this research, we jointly esti-
mate pole-zero filter and LF glottal waveform model parameters
to model the shape of the vocal tract and the glottal excitation,
respectively over short time periods. These time-varying parame-
ters, corresponding to the physical characteristics of the singer, are
used to train a Hidden Markov Model (HMM). The HMM is used
to model the dynamic behavior of the source-filter parameters, cor-
responding to some of the expressive characteristics of the singer.
We propose a system that is able to identify singers based upon
the model of greatest likelihood among the individually trained
HMMs. We also explore the use of individual HMM states as a
method of mapping from the parameters of one singer to another
in a preliminary attempt at singing voice transformation. The data
used in this analysis was recorded from four conservatory-level
classically trained singers.

1. INTRODUCTION

Individual voices tend to be easily distinguished and thus reflect
the identity of an individual. We are undeniably sensitive to the
unique qualities of voices and can perceive those qualities after
listening to a voice for just a short time. This is because the vo-
cal apparatus, while being extremely complex and flexible, is also
highly self-consistent. The distinctive properties of the voice are
believed to be a combination of physiological factors (e.g. vocal
fold stiffness and vocal tract size) and expressive factors (e.g. pro-
nunciation and accent). In this research, we attempt to model both
types of factors in order to establish and simulate singer identity.

A good deal of research has been performed on features for
speaker (talker) identification. Much of this work has focused on
spectral features used in speech recognition systems, such as Mel-
frequency cepstral coefficients (MFCCs), which correlate to the
shape of the vocal tract [1]. Some research has also investigated
glottal excitation features and their potential usefulness in the de-
termination of speaker identity. Both approaches have proven to
be moderately successful, and performance improves when they
are used together [2].

The system presented in this paper is specific to the classically-
trained singing voice and takes advantage of certain assumptions
that discriminate classical singing from speaking. For example,

in classical singing there is a much higher degree of voicing and
longer vowel durations than in speech. The ultimate goal of this
research is not only the identification of a particular singer’s voice,
but also the parameterization of features unique to that voice. Our
system also has possible applications in singing voice transmission
(coding), evaluating voice similarity, and singing voice synthesis.

2. OVERVIEW OF SYSTEM

This section contains a summary of the major components of our
analysis system. Figure 1 shows a block diagram of the frame-
work.
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Figure 1:Flow diagram of framework components

2.1. Source-Filter Parameter Estimation

The source-filter model reflects the physical mechanism of vocal
production and is commonly used for voice analysis/synthesis ap-
plications. For the source component, rather than modeling the
glottal flow directly it is common to model the glottal derivative
wave, which conveniently accounts for the effect of lip radiation (a
differentiation). In our representation, the glottal derivative wave,
g[n] is filtered by the vocal tract impulse response,h[n], to pro-
duce the voice ouput,s[n].

s[n] = g[n] ∗ h[n] (1)

Historically, the estimation of source and filter parameters has
been performed independently in order to simplify the analysis.
Though convenient, this approximation is also inaccurate since vo-
cal fold oscillation and vocal tract shape are actually somewhat de-
pendent. For example, singers frequently modify their vowels (vo-
cal tract shape) in order to more easily sing a high pitch. These de-
pendencies may also be distinctive features of an individual voice.
To account for these variables, we derive our source-filter model
parameters jointly (simultaneously) from the acoustic data.

In our analysis, we initially use the KLGLOTT88 model [3]
to represent the glottal derivative source, and a fixed-order filter
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(derived via linear prediction) to model the vocal tract filter. These
models lend themselves to a particularly efficient solution for joint
parameter estimation, via convex optimization. Using the jointly-
derived filter estimates, the excitation is then re-parameterized us-
ing the more complex LF model, which more accurately reflects
the waveshape of the glottal derivative. Effects not represented by
these models (such as turbulence) result in a residual noise signal,
which is modeled seperately. The following estimation procedure
was first suggested in [4] and a brief summary follows.

The KLGLOTT88 glottal derivative model is defined as fol-
lows:

ĝ[n] =


2an− 3bn2, 0 ≤ n < T ·OQ

0, T ·OQ ≤ n < T
(2)

T corresponds to the pitch period (in samples) andOQ is the open-
quotient, or the fraction of the period for which the glottis is open.
The parametersa andb are further related as follows:

a = b ·OQ · T (3)

Simultaneous estimation of the glottal derivative and vocal
tract parameters involves de-convolution of the source and filter
functions from the voice signal. To accomplish this, we attempt
to minimize the distance between the KLGLOTT88 source model,
ĝ[n] and linear prediction residual,g[n], over one period given
values of the periodT and open-quotientOQ. This error function
is convex and therefore has a guaranteed optimal solution. The
solution is calculated using quadratic programming, resulting in
simultaneous estimates for the KLGLOTT88 parameters and poly-
nomial filter coefficients of the LP filter.

Our representation differs from [4] in the following ways: 1)
Joint parameter estimation is performed on a warped frequency
scale, to more accurately model the frequency sensitivity of hu-
man perception, 2) Glottal closure instants are not calculateda
priori , but are optimized from the data given the assumed models
for source and filter, and 3) The residual noise is modeled using
a stochastic codebook, individually trained for each singer. These
extensions are described in greater detail in the sections that fol-
low.

2.1.1. Parameter Estimation with Warped Linear Prediction

StandardLinear Prediction(LP) estimates a signal from a linear
combination of previous samples [5].

s[n] =

pX
k=1

αks[n− k] + g[n] (4)

From the source-filter relation (Eq. 1), we can derive the transfer
function,H(z), which is an all-pole filter.

H(z) =
S(z)

G(z)
=

1

1−
Pp

k=1 αkz−k
=

1

A(z)
(5)

A disadvantage of standard LP is that all frequencies are treated
equally on a linear scale while the frequency sensitivity of the hu-
man ear is closer to logarithmic. As a result, LP analysis some-
times places additional poles at higher frequencies while neglect-
ing closely spaced formants at lower frequencies where the ear is
more sensitive. Instead, we useWarped Linear Prediction(WLP)
to nonlinearly warp the spectrum of a signal to increase resolution

at lower frequencies. This can be accomplished by replacing each
standard delay with the following all-pass filter [6].

z−1 → D(z) =
z−1 − λ

1− λz−1
(6)

We use a parameter value ofλ=0.4, which provides a moderate
degree of frequency warping. Higher values were found to cause
more instability in the filter estimates.

To use WLP in the joint source-filter parameter estimation,
we must reformulate the LP residual as a WLP residual. From
Equation (5), we obtain thez-transform of the LP residual,G(z):

G(z) =
S(z)

H(z)
= S(z)A(z) = S(z)

 
1−

pX
k=1

αkz−k

!
(7)

To take advantage of frequency warping, we must replace each
delay with the allpass filterD(z) of Equation (6).

G(z) = S(z)

 
1−

pX
k=1

αkD(z)k

!
(8)

In the time domain,D(z)k is thek-fold convolution ofδ[n] (the
impulse response ofD(z)) with the original non-delayed signal.
We denote this using the generalized shift operatordk{·}. [6].

d1{s[n]} ≡ δ[n] ∗ s[n]
d2{s[n]} ≡ δ[n] ∗ δ[n] ∗ s[n]

...

(9)

Thus, we obtain the following relation between the WLP residual
and the voice signal:

g[n] = s[n]−
pX

k=1

αkdk{s[n]} (10)

We want to determine the parameter values that minimize the dis-
tance betweeng[n] and our KLGLOTT88 model,̂g[n]:

e[n] = ĝ[n]− g[n] =(
2an− 3bn2 − s[n] +

Pp
k=1 αkdk{s[n]}, 0 ≤ n < T ·OQ

0− s[n] +
Pp

k=1 αkdk{s[n]}, T ·OQ ≤ n < T

(11)

This gives us the error at each sample, but we want to minimize
theL2-norm (squared error) over an entire period.

min

TX
n=0

(e[n])2 = min

TX
n=0

(ĝ[n]− g[n])2 (12)

As in [4], this modified constrained optimization problem can be
solved efficiently using quadratic programming. The result is a si-
multaneous estimate of the excitation parametersa andb, and the
warped LP filter coefficients (αk) for each analysis frame. An ex-
ample of parameter estimation from one period is shown in Figure
2. Minimizing Equation (11), however, assumes thatT andOQ
are known. The following section (2.1.2) describes the estimation
of these parameters.

The warped analysis results in an all-pole filter in the warped
frequency domain, but when transformed to the linear frequency

SMAC-2



Proceedings of the Stockholm Music Acoustics Conference, August 6-9, 2003 (SMAC 03), Stockholm, Sweden

 0.5

0

0.5
One period

0 20 40 60 80
 0.2

0

0.2

n

g[n] and g[n]^
 50

0

50
Warped LP estimate

0 2000 4000 6000 8000
 50

0

50
LP estimate unwarped

Frequency (Hz)

g[n]
g[n]
^

Figure 2:Joint source-filter parameter estimation of vowel [e]

domain it is actually a pole-zero filter. Fortunately, the analysis
is conducted entirely in the warped domain, which maintains the
simplicity of the all-pole representation (requiring fewer coeffi-
cients).

Once the filter parametersαk are estimated, the WLP residual
g[n] can then be fitted to the more sophisticated LF model,g̃[n],
which more accurately describes the shape of the wave.

g̃[n] =

8><>:
Eoe

αnTs sin(ωgnTs), 0 ≤ nTs < Te

− Eo
εTa

h
e−ε(nTs−Te) − e−ε(Tc−Te)

i
, Te ≤ nTs < Tc

0, Tc ≤ nTs < To

(13)
Eo, α, ωg, ε, Ta, Te, andTc are all free parameters, though there
are dependencies between some of them.Ts is the sampling period
andTo is the pitch period. The parameters are estimated using
constrained nonlinear minimization, which is described in detail
in [4].

2.1.2. Glottal Closure Instant and Period Detection

The parameter estimation from the previous section is pitch-syn-
chronous, where each analysis frame is time-aligned with each pe-
riod of the output waveform. This requires the estimation of pe-
riod boundaries which are aligned to the glottal closure instants
(GCIs). Several techniques have been proposed for GCI detection
(e.g. [7]), but each technique has some deficiencies which can
result in GCI errors, leading to poor model fitting and poor source-
filter parameter estimates. Instead of attempting to calculate the
GCIsa priori, we perform a search for the period resulting in the
best model fit.

Likewise, it is necessary to search for the appropriate value
of the open quotient,OQ. Therefore, we simultaneously search
for the optimal values ofT andOQ that will minimize the overall
error (Eq. 12). We obtain an initial estimate of the first several
GCIs from a fixed-frame size LP residual. The residual has large
peaks at moments of least linear predictability, which are usually
close to the instants of glottal closure. The search is initialized by
performing a linear search over all reasonable values ofOQ (0.4
to 0.9) and values ofT close to (within a few samples) the initial
GCI estimate. Since neitherT nor OQ will not vary greatly from
one period to the next, we need only search a small range of values
around the current values for each successive frame.

2.1.3. Stochastic Component Estimation

There are several stochastic sources that contribute to the overall
vocal output, such as glottal aspiration noise and air turbulence
in the vocal tract. These other noise-like sources prevent a per-
fect match to the vocal wave using the LF and WLP parameteriza-
tion. Glottal aspiration noise is strongly correlated to the instants

of glottal opening and closure, and certain vocal tract shapes are
also more susceptible to air turbulence. Thus, the stochastic com-
ponents must be modeled in a very specific way to reflect these
dependencies. Glottal aspiration noise has been previously mod-
eled statistically using wavelet de-noising [4].

We use a stochastic codebook approach, where the codebook
is determined viaPrinciple Components Analysis(PCA) of the
glottal derivative residuals. PCA involves calculating the eigen-
vectors and eigenvalues from a matrix of input vectors. The eigen-
vectors corresponding to the highest eigenvalues capture the great-
est amount of variance, statistically, of the input data. We want
to find the eigenvectors of our set of residual noise vectors,r[n],
where

r[n] = g̃[n]− g[n] (14)

PCA requires that all input vectors be the same length for statistical
analysis, but in our case the length of each residual noise vector
r[n] varies according to the period. So we transform each residual
to the frequency domain using equal-sized FFTs ofN points to
obtain:

R[ωk] = F{r[n]}, whereωk =
2πk

N
, k = 0, . . . , N − 1 (15)

Sincer[n] is real, we need only the firstN
2

+ 1 values ofR[ωk],
and PCA is then performed on these vectors. The analysis is per-
formed on the complex FFT values in order to preserve the phase
information, which is crucial to our noise model. From this, we
obtain N

2
eigenvectors, which comprise the codebook.

For each noise vector,r = r[n], we obtain a weighting vector
w corresponding to the contribution of each of the eigenvectors in
codebookC:

w = Cr (16)

Thenc highest weighted codebook vectors, corresponding to the
highestnc values ofw are then used to estimater[n] for each
period.

2.2. Phonetic Segmentation

The analysis framework used in the singer identification system
operates on individual vowel segments, requiring the input to be
phonetically segmented. Using labeled data from the TIMIT speech
database, simple templates were built for each of the 42 English
phonemes. The templates were created by averaging the MFCCs
calculated from short-time frames of the labeled data. The pho-
netic segmentation system assumes that a phonetic transcript of the
singing input is availablea priori, a restriction currently necessary
for accurate segmentation. The system calculates MFCCs for each
short-time frame of input singing data and determines theL2 norm
from each MFCC frame to each phoneme template. The phonemes
are aligned to the singing data using dynamic programming to find
the shortest-distance path over the matrix of MFCC-to-phoneme
template distances, given the constraint of phoneme order.

2.3. HMM Model Training

We trained individual HMMs for each vowel ([a], [e], [i], [o], [u])
and each singer in our data set. Our observations consisted of the
source-filter features defined in the previous sections. Each HMM
state corresponds to one period, and transitions occur at each pe-
riod boundary. The identification system operates by determining
which singer’s HMM has the highest likelihood for a given vowel,
as established by the phonetic segmentation. The system currently
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Figure 3:HMM state path for a scale passage on the vowel [e].

uses 10 states for each HMM. This value was determined exper-
imentally to cover the wide variability of each vowel’s observed
features while limiting the computational complexity of the model.
An example state path is shown in Figure 3.

3. SINGER IDENTIFICATION

The current data set consists of recordings from 4 conservatory-
trained classical singers (two sopranos, one tenor, and one bass-
baritone). Each singer performed a variety of vocal exercises (such
as scales and arpeggios) emphasizing the 5 major vowels in addi-
tion to one entire piece from the classical repertoire. The exercises
were segmented by vowel, and each vowel segment was used to
train the vowel HMMs specific to each singer.

Vowel segments were extracted from the actual pieces and
evaluated against the trained HMMs. The identification system
operates by determining which singer’s HMM has the highest like-
lihood for a given vowel, and the singer with the most vowel HMM
matches in the excerpt is identified as the source performer. Five 5-
7 second excerpts from each piece were used from each singer. On
this admittedly small data set, the identification system performed
with an overall accuracy of>90% when operating over entire ex-
cerpts and∼70% over the individual vowel segments. More thor-
ough results are presented in [8].

4. VOICE TRANSFORMATION

The system described in this paper has also been used for analy-
sis/synthesis, where the HMM state paths are used to reconstruct
the voice output. Because the various parameters for each pitch
period can be represented by a single state value, a great deal of
compression can be achieved. The sound quality, however, can be
inconsistent, depending on how well the HMM states represent the
input signal. Informal listening has shown that the sound quality
over the vowel segments is mostly preserved. Higher sound qual-
ity is likely to be achieved with larger amounts of training data and
a higher number of HMM states per model.

The HMM states provide a common point of reference be-
tween differing voice models, allowing us to map parameters from
one to another. The states themselves represent clusters of signifi-
cant concentration in each singer’s parameter space. Since there is
no consistency in the labeling of states between singers, we reorder
each HMM’s state labels according to their frequency of occur-
rence (state 1 becomes the most often occurring state, followed by
state 2, etc.), enforcing a semi-statistical relationship between the

state numbers (Figure 4). We then used the revised state path from
one singer to drive another singer’s HMM for re-synthesis. Infor-
mal listening does demonstrate a definite transformation in voice
quality, though the accuracy of the effect is difficult to quantify.
This is a simple mapping and we are currently investigating alter-
native methods for mapping between the states of different singers.
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Figure 4:HMM state histogram for two singers for vowel [e].

We did not utilize the stochastic codebooks in the these prelim-
inary voice transformation experiments. There is no simple way
to map from one codebook to another. An initial attempt at sim-
ply applying the code vector weights calculated from one singer’s
codebook to another resulted in a more distorted sound, similar to
phase distortion. A different parameterization may be needed to
provide a more suitable mapping of the stochastic component of
the excitation.
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